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SUMMARY

Numerical simulations of a heaving airfoil undergoing non-sinusoidal motions in an incompressible
viscous �ow is presented. In particular, asymmetric sinusoidal motions, constant heave rate oscillations,
and sinusoidal motions with a quiescent gap, are considered. The wake patterns, thrust force coe�cients,
and propulsive e�ciency at various values of non-dimensional heave velocity are computed. These have
been compared with those of corresponding sinusoidal heaving motions of the airfoil. It is shown that
for a given non-dimensional heave velocity and reduced frequency of oscillation, asymmetric sinusoidal
motions give better thrust and propulsive e�ciencies in comparison to pure harmonic motion. On the
other hand, constant rate heave motion do not compare favourably with harmonic motion. A train of
sinusoidal pulses separated by a quiescent gap compares favourably with a pure sinusoidal motion, but
with the notable exception that the quiescent gap induces a discontinuity that induces large impulses to
the wake pattern. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The ability of a plunging airfoil to generate thrust is well known. This phenomenon is known
as the Knoller–Betz or Katzmayer e�ect. Many researchers have performed experimental and
numerical studies on purely plunging and �apping airfoil and on their thrust generation char-
acteristics and wake patterns. A thrust generating foil shows a wake pattern behind its trailing
edge which is opposite in sense to a Karman vortex street. The �ow past a plunging airfoil is
of interest not only in understanding the �uid dynamics of birds, insects, and aquatic animal
propulsion, but also useful in designing �apping foil micro-air vehicles [1].
Heaving airfoil motions have been studied for quite sometime now. Garrick [2] has shown

using linearized potential �ow theory that for small amplitude heaving oscillation, thrust force
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2 S. SARKAR AND K. VENKATRAMAN

exists at all frequencies. Lighthill [3], has also theoretically calculated the thrust force and
e�ciency for an inviscid and nonlinear �ow model. This study also predicts positive thrust at
every frequency, and shows that propulsion e�ciency is maximum as the frequency approaches
zero. Jones et al. [4], have performed water tunnel experiments for �ow visualization of the
unsteady wake behind plunging airfoils. Numerical simulations with an inviscid unsteady panel
code is also presented. The non-dimensional plunge velocity, k �h, is shown to be an important
parameter for thrust generation and the nature of the wake vortex patterns. �h is the heave
amplitude normalized by the airfoil chord c, and k is the reduced frequency k=!c=V∞.
At high values of k �h, wake de�ection was also observed. Tuncer and Platzer [5] used a
compressible Navier–Stokes solver at a low subsonic Mach number to study the unsteady �ow
patterns and thrust characteristics of a plunging and a combination of plunging and pitching
motion. Triantafyllou et al. [6] show that the reduced frequency or Strouhal number is an
important parameter to study thrust generation characteristics. Lai and Platzer [7] conducted
water-tunnel experiments on a plunging airfoil and conclude that airfoil motion having non-
dimensional plunge velocity below k �h=0:43 produce drag, while those above produce thrust.
A thrust producing wake pattern become asymmetric and de�ected from their mean position at
values of k �h¿1. Lewin and Haj-Hariri [8] have numerically studied viscous �ow past a two-
dimensional sinusoidally heaving airfoil over a range of frequencies and amplitudes. Vortex
patterns and thrust characteristics, as well as propulsive e�ciencies have been computed. They
have found asymmetric and de�ected vortex patterns as the Strouhal number increases. At a
given Strouhal number, the maximum e�ciency occurs at an intermediate frequency, not in the
low-frequency range as suggested by inviscid theories. It is presumed that at low frequencies,
signi�cant leading edge vortex shedding results in loss of thrust. On the other hand, in the
high-frequency region, e�ciency decreases with increase in frequency, in agreement with the
prediction of ideal �uid theory. Wang [9] has also observed this phenomenon. The Reynolds
numbers for these studies were in the range of 500–1000. Isogai et al. [10] have studied
the compressible viscous �ow past an airfoil in combined pitch and heave motion with phase
di�erence between them. The in�uence of phase angles and reduced frequencies, as well as
two di�erent pitch to heave amplitude ratios, on the propulsive e�ciency have been examined.
Anderson et al. [11] have experimentally studied the propulsive performance of a harmonically
oscillating airfoil in both heave and pitch and have observed optimum parameter ranges.
Results have also been compared with linear and nonlinear inviscid theories. Read et al.
[12] de�ne an equivalent angle of attack for combined heave and pitch motion of an airfoil.
At high Strouhal numbers, the angle of attack � shows multiple peaks in one period. A
higher-order harmonic motion in heave can achieve signi�cant thrust recovery in such cases.
Hover et al. [13] have extended a similar study with various non-sinusoidal angle of attack
� pro�les and compared their propulsive performance. Koochesfahani [14] has made some
interesting experimental observations with a pitching airfoil undergoing asymmetric sinusoidal
oscillations.
The present work is a numerical study of viscous incompressible �ow past an airfoil heav-

ing in a near-sinusoidal oscillatory motion. Three such motions are considered. One is the
asymmetric sinusoid which is a sinusoid excepting that the downstroke is faster=slower than
the upstroke. The asymmetry parameter S de�nes the fraction of the time-period it takes to
complete the upstroke. The second type of motion considered is the constant heave rate in
the upstroke and downstroke. This results in a triangular waveform. The third and �nal type
of motion studied is the sinusoidal pulse train. The vorticity patterns of the �ow for such
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INCOMPRESSIBLE VISCOUS FLOW PAST A HEAVING FOIL 3

motions, as well as thrust generated and propulsive e�ciency, are computed and compared
with purely sinusoidal heaving motion.

2. THE RANDOM DISCRETE VORTEX METHOD

An incompressible viscous �ow can be described in terms of its vorticity �=∇ ×V as [15]
D�
Dt

= @�=@t +V:∇�=�:∇V+ �∇2� (1)

where � is the viscosity and V is the velocity �eld. The �:∇V term gives the rate of de-
formation of the vortex lines and exists only in three-dimensional �ow. Hence for a 2-D
incompressible �ow the vorticity transport equation is rewritten in the form

D�
Dt
= �∇2� (2)

The relationship between the vorticity and the stream function is given by the Poisson
equation

∇2 = −� (3)

where  is the stream function. In this representation, the far-�eld boundary condition that the
�ow remains undisturbed needs to be carefully dealt with during numerical implementation
[16].
The relationship between the vorticity and the velocity �eld is given by a vector Poisson

equation [15, 17]

∇2V= − ∇ ×� (4)

The solution to this vector Poisson equation with appropriate boundary condition uniquely
de�nes the velocity–vorticity relationship, and is expressed as an integral representation that is
similar to the Bio–Savart law of electromagnetic theory [15, 17, 18]. Now the velocity �eld is
determined from the known vorticity distribution in the �uid region R, as well as the velocity
boundary conditions on the surface S of the solid body as well as the far-�eld. This integral
relation is given by [17]

V(r; t)= − 1
2�

[∫
R

�× (r0 − r)
|r0 − r|2 dR+ 2

∫
S

�b × (r0 − r)
|r0 − r|2 dS +V∞

]
(5)

where �b is the rigid body angular velocity of the solid whose boundary is denoted by S,
and V∞ its translational velocity (Figure 1). r0 is the vector distance from the origin of the
reference frame to the vortex particles in the �uid region R, and r is the point in the �ow-�eld
where the induced velocity due to these vortex particles are to be determined. Note that the
velocity �eld automatically satis�es the far-�eld velocity boundary condition of the �ow being
undisturbed.
The discrete vortex numerical simulation that we have used in this study of heaving airfoil

motion will use the vorticity evolution Equation (2) together with the relation for the velocity
�eld in terms of the vorticity given by Equation (5).
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Free Stream
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Body translation

body rotation

Body bound vortex sheet

Figure 1. Schematic diagram of a translating and rotating body in the �ow �eld.

Equation (2) can be split into convection and di�usion parts and can be solved sequentially.
This is known as operator splitting [19]. Thus, Equation (2) can be represented as

@�=@t +V:∇� = 0 (6)

@�=@t = �∇2� (7)

Equation (6) represents the convection of the vorticity in the �uid region. The convec-
tive velocity component induced by the vortex particles in the �uid region R is given by
the Biot–Savart relation Equation (5). Equation (7) represents the di�usion of the vorticity.
The solution of the di�usion equation (7) is identical to the probability density function of a
Gaussian random variable with a zero mean and standard deviation

√
2t=Re [15]. Therefore,

in the discrete vortex technique of modelling viscous incompressible �ow, the di�usion of
the vorticity is modelled as a random walk [19]. Di�usion then is simulated as a displace-
ment of the vortex element in the two orthogonal directions using two independent sets of
Gaussian random numbers. These Gaussian random numbers will have zero mean and a vari-
ance of 2�t=Re, where �t is the time interval [20]. This technique gives good convergence
for the Navier–Stokes equation, if the number of discrete vortices used in the formulation is
su�ciently large.
In summary, the convective displacement of the vortex particle, for each time step, is

determined from the convective velocity component. The displacement due to the di�usion
component, after each time step, is determined from the random walk simulation. The total
displacement of any discrete vortex particle, after each time step, then will be the sum of the
displacements due to convection and di�usion.
The vorticity is generated at the �uid–solid boundary interface. This is done by enforcing

the no-slip and no-penetration boundary conditions on the body surface S. The near-�eld
boundary condition at the body surface states that the �uid velocity at any point on the body
surface V(S) is equal to the velocity of the body Vb at that point

V(S)=Vb (8)

To enforce the near-�eld boundary conditions, a body bound vortex sheet is assumed. The
solution of this unknown vortex sheet is obtained by assuming the no-normal �ow condition
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on the body surface

(V −Vb): n̂=0 (9)

where n̂ denotes the normal vector to the body boundary. This body bound vortex sheet, in
general, will not satisfy the no-slip condition. Therefore, the non-zero tangential velocity is
nulli�ed by generating free vortices at the surface. The vorticity �ux of this free vorticity in
the normal direction to the body surface is given by [21–23]

�
@�
@n̂
(s)= − �(s)=�t (10)

where the left-hand side is the local vorticity �ux, �(s) is the vortex sheet strength as a
function of path length s along the boundary, and �t is the time interval. The vorticity �ux
is assumed to be constant over time interval �t.

2.1. Numerical implementation

The two-dimensional body surface is divided into a number of straight line panels with the
collocation points at the centre. A vortex node is designated at each panel mid-point. A body
bound vortex sheet is assumed over the body surface, where the strength of the vortex sheet
at each panel is an unknown. The no-normal �ow boundary condition, so as to compute the
strength of this unknown vortex sheet, is satis�ed at the mid-point of each panel. However, in
order to keep the continuity of the vortex sheet strength across the panels, a linearly varying
vortex strength is assumed [24]. At the end of each time step, the vortices corrected for the
no-slip �ow boundary condition are created at a distance � above the body surface. In this
procedure, we further sub-divide each panel into a number of sub-panels, and one vortex
per sub-panel is released into the �ow. A thin �ctitious region close to the body surface
is assumed and is referred to as the control zone with a thickness � [18]. This is shown
schematically in Figure 2. The creation of new vortices takes place inside this control zone.
The newly created vortices are actually within the boundary of this so-called control zone,
when they are released from the surface satisfying no-slip. However, the control zone may
already have a number of vortices present as a left-over from the previous time step. This
could happen when some of the newly created vortices, after convection and di�usion at the
previous time step, might fail to cross the control zone boundary and stay inside. Therefore,
at the next time step when again newly created vortices join them, they are combined with the
newly created vortices of respective panels to give the resultant nascent vortices. The process
of nascent vortex creation has been depicted in Figure 3. It needs careful selection of the
thickness of the control zone as it a�ects the simulation. The thickness of the control zone is
�nalized after a trial and error procedure and the same has been used for all the calculations.
The no-normal �ow boundary condition at each panel mid-point, in order to compute the

panel vorticity strength is represented as

Vfs; i +Vvf ; i +Vvc; i +Vbm; i=0 (11)

Equation (11) states that the sum of the normal velocities induced at panel mid-point i due
to the free stream (Vfs; i), vortices outside the control zone (Vvf ; i), vortices inside the control
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ds
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Figure 2. Schematic diagram depicting control zone and nascent vortex blobs.
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Figure 3. Vortex movement in and out of the control zone and nascent
vortex creation at each time step.

zone (Vvc; i), and by the body motion (Vbm; i) is equal to zero. There will be as many number
of equations as the number of unknown panel vortex strengths. However, as there are no
source=sink terms in the �ow model, one equation in this set will be redundant. Therefore
an additional condition is needed to obtain unique panel vorticity strengths. This additional
condition is obtained from the principle of conservation of circulation or what is known as
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Kelvin’s theorem [18]

∑
�v +

j=N∑
j=1
�j + �bm =�st (12)

where the �rst term
∑
�v represents the summation of the circulation of the wake vortices,

the second term denotes the circulation of the unknown nascent vortices inside the control
zone for a total of N number of panels, �bm is the circulation due to body motion, and �st is
the circulation in the �ow �eld prior to the start of simulation. Figure 1 shows the schematic
diagram of a body with generalized motion in the �ow �eld. The vortices created at the body
boundary go out of the control zone following convection and di�usion. If the vortex sheet
strength of any panel at time t be �1, and the panel vortex sheet strength remaining within
the control zone from the previous time step (t −�t), after convection and di�usion, be �2,
then from Equation (10)

(�1 − �2)= − �
@�
@n
�t (13)

Each surface panel is further sub-divided into a number of sub-panels, and after the creation
of the vortices at each panel, they are broken down into vortex blobs at each of the sub-panels
[18]. These blobs are later convected and di�used. Each blob is assumed to have symmetrical
vorticity distribution de�ned by a stream function [19]

 (r)=

⎧⎪⎪⎨
⎪⎪⎩

log(r)
2�

(r¿�)

r=�
2�

(r¡�)

(14)

where � is the cut-o� radius. This ensures that outside the � range, vortices follow the Bio–
Savart law of velocity, and inside the � range, the velocity is constant.
The study uses 160 panels with 5 subpanels in each of them. This makes a total of 800

vortices generated at any time step. The airfoil chord length c=1, �=0:0022, and �=0:0088.
These values were �nalized after some trial and error, and validation of results with the
available literature. An important entity which can control the accuracy of the numerical
scheme is the time interval. As we have already seen in Equation (10), the time step size
should be small enough to ensure that the vorticity �ux generated from the body can be
assumed to be constant over the interval. We have followed a �rst-order time marching
scheme for the simulations, and it gives reasonably good results with a su�ciently small time
step size of �t=0:005 s.
The forces exerted on the body arise from two major sources, namely the surface pressure

and surface friction. The tangential pressure gradient on the body surface is given by

1
�
@p
@ŝ
= − ŝ:

DVb

Dt
− n̂:r

D�b

Dt
+ ŝ:r�2b + �

@�
@n̂

(15)

where � is the constant density of the �uid, Vb is the translational velocity of the body motion
and �b is the angular velocity of the body motion. ŝ and n̂ denote the unit vectors in the
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body tangential and normal directions. The last term on the right-hand side of the equation
can be evaluated by using Equation (13). The shear stress or friction (�) on a solid boundary
in a Newtonian �uid is given by

�=	
@us

@n̂
(16)

Here, us is the velocity component tangential to the surface. Equations (15) and (16) can
be integrated to calculate the aerodynamic loads from the surface pressure distribution.
The mean propulsive e�ciency 
 is de�ned as the ratio of the mean thrust force generated

times the free-stream airspeed V∞ and the average input work done. The input work done
is calculated by taking force normal to the horizontal �ow times the local heave velocity
[5, 9].

3. KINEMATICS

Sinusoidal oscillations are probably the most common form of periodic oscillation found in
real life biological locomotion. However, we are interested to compare the sinusoidal cases
with various non-sinusoidal motions in terms of thrust generation and propulsive e�ciency.
Various types of complex non-sinusoidal motions are realizable in man-made small scale
thrust generating devices like MAVs or robotic biological locomotion simulators like robo-
�shes, etc. Our interest is to see if such motions can actually improve the capabilities of these
devices.
Sinusoidal plunging or heaving motion about an axis parallel to the streamwise velocity is

given by

ho(t) = h sin(!t)

vo(t) = h! cos(!t)
(17)

where h is the amplitude in plunge, and ! is the frequency of oscillation. If we rescale
time as �=V∞t=c, non-dimensionalize the heave displacement amplitude as �h= h=c, de�ne
the heave velocity vo(�)=dho(�)=d� and k=!c=V∞. Then the non-dimensional displacement
and velocity are given by

�ho(�) = �h sin(k�)

�vo(�) = �hk cos(k�)
(18)

Previous studies indicate that the non-dimensional heave velocity amplitude �hk is an im-
portant parameter to study the thrust generation and nature of wake vortex pattern [4, 7].
We compare the performance of sinusoidally heaving airfoil with many non-sinusoidal cases.

In this category, we �rst consider an asymmetric sinusoidal heaving motion. The asymmetry
is de�ned by a parameter S that is de�ned as the fraction or percentage of the time-period of
one cycle required to reach the maximum amplitude starting from the minimum amplitude.
Following this de�nition, S=50% implies a perfect sinusoidal waveform. One can represent
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this type of waveform mathematically as

ho(t) = h sin
(
2�
2ST

t − �=2
)
; 06t6ST

ho(t) = h sin
(

2�
2(1− S)T

t + �=2
)
; ST6t6T

(19)

In the above T is the time-period of the motion. Some examples of these type of motions
are shown in Figure 7.
Another type of non-sinusoid waveform chosen for analysis here is a constant rate heaving

oscillations with the upstroke and downstroke rates same, as shown in Figure 17. An equivalent
sinusoidal waveform is also superposed there.

ho(t) =
4h
T

t

vo =
4h
T

(20)

If we de�ne the non-dimensional heave rate as vo(t)=V∞, then its relation with the non-
dimensional heave rate for a sinusoidal oscillation having the same time-period is given by

vo
V∞

=
2
�
�hk (21)

Finally, we also consider a heave motion that comprises a sine variation with a gap for a
fraction of the time-period, as shown in Figure 22(a).
All the above cases have been simulated in real time t with a time interval discussed in

the earlier section. The chord length and the free stream velocity have both been assumed to
be unity for all the calculations.

4. DISCUSSION

The focus of the present study is to observe the qualitative wake patterns behind a plunging
airfoil as well as to calculate the thrust force, and propulsive e�ciency. The frequency of
oscillation parameter k is varied in a medium to high frequency range. Sinusoidal heave
motion of the airfoil is �rst analysed. Subsequently, we consider the heave motions that are
not sinusoidal during the oscillating cycle. We assume that the airfoil is at zero degree angle of
attack; that is, the stroke plane is normal to the horizontal plane. However, for small values of
angle of attack, the aerodynamic loads can be obtained by rotating the loads obtained for the
zero degree angle of attack case by the appropriate angle. But for very high angle of attack,
where huge separation and dynamic stall phenomena are likely to occur, this transformation
may not be applicable.

4.1. Sinusoidal motion

As discussed earlier in Section 1, the non-dimensional heave velocity k �h plays an impor-
tant role in the wake vortex behaviour and the thrust generation characteristics. Note that
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k �h=(!ho=V∞) is the non-dimensional heave velocity amplitude. In the present study we con-
sider three di�erent values of k �h—0:5; 1:0, and 1:5. For each of these values of the heave
velocity, the reduced frequency is varied between the values 3 and 8. The Reynolds number
of the �ow is �xed at 1× 104. The vortex patterns at these k �h values are all thrust producing
and therefore they are opposite in sense to a drag producing Karman vortex street.
Figure 4 shows the wake vortex patterns and the drag coe�cient history at k �h=0:5 for

three di�erent values of the reduced frequency. At the lower frequency values, the wake
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Figure 4. Unsteady wake patterns and drag history for sinusoidally heaving airfoil at di�erent reduced
frequencies, k �h=0:5: (a) and (b) k =4; (c) and (d) k =6; and (e) and (f) k =8.
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vortex pattern does not seem to be as smooth as that at the higher frequencies. Traces of
weak leading edge vortices in between strong trailing edge vortices can be identi�ed from
the wake pattern at k=4, as seen in Figure 4(a). At higher frequencies however, the wake
behind the trailing edge look more smooth. This is because at higher frequencies, the leading
edge vortices are gradually dissipated into the trailing edge wake rather than being shed and
convected. Also, at k �h=0:5, the wake patterns are seen to be more or less symmetric with
reference to the upstroke and downstroke of the heave motion.
When k �h=1:0, a slight de�ection of the wake pattern was observed. This de�ection is

more prominent at the higher reduced frequencies.
Figure 5 shows the vortex patterns and drag coe�cients for k �h=1:5. In this case, the

wakes are clearly de�ected from their mean positions. We did not observe any switching of
the de�ected wake during the cycles of heave oscillation that were simulated. Jones et al.
[4] have observed mode switching in their water tunnel experiments. They argue that mode
switching is triggered by very small perturbations. They did not observe any mode switching in
their numerical simulations using an inviscid model. Lewin and Haj-Hariri [8] have presented
mode switching for a similar value of k �h and at k=8 and 10. However, they have not
discussed the exact number of oscillation cycles after which the switching occurs.
Figure 6 presents the average thrust coe�cient (CT) and the average propulsive e�ciency

(
) values as a function of k for all the above cases. Thrust is de�ned as negative of the
drag force. The thrust coe�cient is almost constant with varying k at a given value of non-
dimensional velocity k �h. Further, for a given reduced frequency value, the thrust coe�cient
increases with increasing k �h values. Given the limited data set of k �h values, one might hazard
a guess that this increase is nonlinear. The propulsive e�ciency 
 increases when k �h increases
from 0:5 to 1:0. Thereafter there is a decrease. Only at k �h=0:5 is there a pronounced drop
in e�ciency as the reduced frequency increases. The linear potential �ow theory of Garrick
[2] predicts that propulsive e�ciency should decrease with increasing reduced frequency.
In the present study, in the higher frequency range, the same trend is observed. Moreover,
in the present study, we have not observed any major leading edge separation, unlike some
earlier studies carried out at much lower values of Reynolds numbers [8, 9]. At lower Reynolds
number, the stronger viscous e�ects help grow and stabilize the leading edge vorticity.

4.2. Asymmetric sinusoidal motion

An asymmetry parameter S% is de�ned as the fraction or percentage of the time-period of
one cycle required to reach the maximum amplitude starting from the minimum amplitude.
S=50% implies the waveform is a perfect sinusoid. For example, S lower than 50% implies
a faster rate during the downstroke half of the heave cycle than the upstroke half. Example
waveforms have been shown in Figure 7 for S=30; 50, and 60%. We discuss the results for
S=30 and 60%.

4.2.1. kh=0:5. Figure 8 shows the wake patterns and drag histories at three di�erent reduced
frequency values with k �h=0:5 and asymmetry parameter set at S=30%. For this value of S
the downstroke of the cycle is executed faster than the upstroke. There is signi�cant qualitative
di�erence in the wake pattern compared to the pure sinusoidal case shown in Figure 4.
Multiple vortices of the same sign are formed during the slower upstroke half of the heave
cycle, whereas, one strong vortex is formed during the faster part. The wake patterns at all
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Figure 5. Unsteady wake patterns and drag history for sinusoidally heaving airfoil at di�erent reduced
frequencies, k �h=1:5: (a) and (b) k =4; (c) and (d) k =6; and (e) and (f) k =8.

the frequency values show a slight upward de�ection. The shape of the wake and the vortex
pairing also changes from cycle to cycle. At higher values of the reduced frequency the
vortices are more di�used.
When S=60%, for k �h=0:5, Figure 9 shows the wake vortex patterns and the drag coe�-

cients at various reduced frequencies. Note that for this value of S the downstroke is slower
than the upstroke. The wake de�ection is now downward. More than one same signed vortices
are shed during the slower downstroke half of the cycle.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 51:1–29



INCOMPRESSIBLE VISCOUS FLOW PAST A HEAVING FOIL 13

3 4 5 6 7 8
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

k

C
T

kh = 0.5
kh = 1.0
kh = 1.5

3 4 5 6 7 8
0

0.1

0.2

0.3

k

η

kh = 0.5
kh = 1.0
kh = 1.5

Figure 6. Average thrust coe�cient and propulsive e�ciency at di�erent reduced frequencies.

0 50 100 150 200
-1

-0.5

0

0.5

1

t
0 50 100 150 200

t
0 50 100 150 200

t

h(
t)

-1

-0.5

0

0.5

1

h(
t)

-1

-0.5

0

0.5

1

h(
t)

S = 30% S = 50% S = 60% 

(a) (b) (c)

Figure 7. Asymmetric sinusoidal waveform as de�ned by the symmetry parameter S:
(a) S =30%; (b) S =50% (pure sine); and (c) S =60%.

Consider now the drag variation with heave displacement. Note that in Figure 8, for the
fast downstroke, the drag value starts from a near-zero value at the top of the stroke and
ends in a near-zero value near the bottom. Large amount of thrust force is generated during
this half cycle. However, during the returning slow upstroke, the force pattern does not show
much variation and smaller level of thrust force is generated. In contrast, for S=60%, as
shown in Figure 9, the drag variation is anti-symmetric to the one shown for S=30%. There
is very little variation in the slow downstroke, and very large variation in the fast upstroke.

4.2.2. kh=1:0. The wake pattern shows again multiple vortices of the same sign which are
formed during the slower half of the heave cycle. The vortex pairing pattern gets modi�ed
from cycle to cycle. For S¡50% the wake vortices are de�ected upward, and for S¿50%
downward. The magnitude of the de�ection is more than that for the case k �h=0:5. It was
further observed that for this case of k �h, the wake vorticity looks more di�used than the
earlier case.

4.2.3. kh=1:5. Similar patterns are also observed for k �h=1:5 too, as shown in Figures 10
and 11. The trailing wake is displaced upward relative to the free stream for S¡50%, and
displaced downward for S¿50%. The displacement magnitude increases further than in the
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Figure 8. Unsteady wake patterns and drag history at di�erent reduced frequencies, k �h=0:5, S =30%:
(a) and (b) k =4; (c) and (d) k =6; and (e) and (f) k =8.

case of k �h=1:0. Further, the wake vortex appears much more di�used. The tendency of the
wake to appear di�used increases with increase in reduced frequency.
The thrust force and the propulsive e�ciency for all these cases have been compared

with their corresponding sinusoidal cases. In Figure 12, the thrust coe�cient and propulsive
e�ciency for di�erent values of kh have been compared. For a given k �h value, the thrust
force is always minimum for the pure sinusoidal case compared to the asymmetric cases. The

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 51:1–29



INCOMPRESSIBLE VISCOUS FLOW PAST A HEAVING FOIL 15

0 2 4 6 8
-1.5

-1

-0.5

0

0.5

1

1.5

t = 9.42 sec
h/c = 0.125 (upstroke) 

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15
-0.4

-0.3

-0.2

-0.1

0

0.1

h(t)

C
d

C
d

C
d

-1 0 1 2 3 4 5 6
-1.5

-1

-0.5

0

0.5

1

1.5

-1.5

-1

-0.5

0

0.5

1

1.5

t = 6.33 sec
h/c = 0.0833 (downstroke)

-0.1 -0.05 0 0.05 0.1
-0.35
-0.3

-0.25
-0.2

-0.15
-0.1

-0.05
0

0.05
0.1

h(t)

0 1 2 3 4

t = 4.71 sec
h/c = 0.0625 (downstroke) 

-0.1 -0.05 0 0.05 0.1
-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

h(t)

(a)

(c)

(e)

(b)

(d)

(f)

Figure 9. Unsteady wake patterns and drag history at di�erent reduced frequencies, k �h=0:5, S =60%:
(a) and (b) k =4; (c) and (d) k =6; and (e) and (f) k =8.

more the asymmetry, or in other words the faster the motion reaches one extrema from the
other, the more the thrust generated. Further, the thrust coe�cient reduces with frequency for
all values of the non-dimensional heave velocity amplitude. For a given reduced frequency,
the thrust coe�cient increase with heave velocity amplitude, for any given value of S.
The propulsive e�ciency trends though are not clear. For k �h=0:5 the propulsive e�-

ciency is greater if the rise or fall of amplitude is faster. But at k �h=1:0 this is not true.
The propulsive e�ciency seems to be the same for all values of S, except in the lower and
upper reduced frequency range of the bandwidth considered. However, the propulsive e�-
ciency decreases with increase in k.
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Figure 10. Unsteady wake patterns and drag history at di�erent reduced frequencies, k �h=1:5, S =30%:
(a) and (b) k =4; (c) and (d) k =6; and (e) and (f) k =8.

Though not shown here, the lift coe�cient variation with k for di�erent values of the
asymmetry parameter follows the same trend as in the case of the thrust coe�cient. That is,
the lift force generated is more when the sinusoidal motion is more asymmetric. This is true
for the three di�erent values of k �h values that we simulated.
We have also shown the wake pattern for di�erent values of S. Figures 13 and 14 shows

the vortex pattern for k=7 and k �h=0:5 as the symmetry parameter of the non-sinusoidal
motion changes from 20 to 80%. There is an upward de�ection of the wake for S¡50%, and
a downward de�ection for S¿50%. It is clear that, as the asymmetry factor goes towards
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Figure 11. Unsteady wake patterns and drag history at di�erent reduced frequencies, k �h=1:5, S =60%:
(a) and (b) k =4; (c) and (d) k =6; and (e) and (f) k =8.

the perfect sinusoidal value, that is towards S=50%, the de�ection from the mean position
decreases, that is the upstroke and the downstroke becomes more similar. The change in shape
in the wake vortex pairing is also more prominent with the increase in the asymmetry.
The average aerodynamic thrust and the propulsive e�ciency at various values of S have

been calculated for k �h=0:5 and 1:0, for k=7. For both values of k �h, thrust coe�cient CT
shows a minimum at S=50%. The propulsive e�ciency at k �h=0:5, also follows the same
trend. However, for k �h=1:0, minimum e�ciency is observed for S=20 and 80%, that is,
when the asymmetry factors are maximum. This is shown in Figure 15.
In summary, then, for maximum propulsive e�ciency and thrust, values of k �h greater than

one is preferable, S should be away from 50% or in other words the asymmetry should be
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Figure 12. Variation of thrust coe�cient and propulsive e�ciency with reduced frequency: (a) and
(b) k �h=0:5; (c) and (d) k �h=1:0; and (e) and (f) k �h=1:5.

more. Note that when S¡50%, the downstroke is relatively faster executed than the upstroke.
Higher the rate, more the vorticity generated by the airfoil during its oscillation cycle.
Jones et. al. [4] have discussed about the switching of wake de�ection mode (that is

upwards or downwards) by changing the initial condition. However, in their experimental
studies, they have observed mode switching to happen randomly on its own. This was not
observed in their numerical simulations using an inviscid model. In the present study too, we
have not observed any mode switching to occur on its own. However, we have been able to
see mode switching after altering the initial conditions. A typical case with k=6 and k �h=0:5
have been presented in Figure 16. For S=30%, shown in Figures 16(a) and (b), a downward
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Figure 13. Unsteady wake patterns with di�erent shape functions, k �h=0:5, k =7: (a) S =20%;
(b) S =30%; (c) S =40%; and (d) S =50%. Instantaneous h=c=0:07 (upstroke) for all asymmetric

sinusoidal case, for S =50%, airfoil is at the mean position downwards.

de�ection is observed now, after considering an opposite initial condition. In the earlier case
the wake de�ection was upward. For S=60%, with an opposite initial condition, we get an
upward de�ected wake, unlike the earlier observation.

4.3. Constant heave-rate motion

We have also simulated a few cases of constant rate heaving motions. A typical motion time-
history is shown in Figure 17 along with an equivalent sinusoidal motion. In this study, we
consider di�erent constant rates of heaving. The non-dimensional heaving rate is de�ned by
vo=V∞. Each rate is compared with its equivalent sinusoidal reduced frequency k. The relation
between the non-dimensional constant heave rate and k is vo=V∞=2=�k �h. �h in this case also
refers to the heave amplitude normalized with respect to the chord length. We set �h=0:2 in
all the simulations for this type of motion. The non-dimensional heave rate values considered
in this study are namely 0:4; 0:6; 0:8, and 1:0. These then correspond to values of k equal to
�, 3�=2, 2�, and 5�=2, respectively.
The wake patterns and the variation of the drag coe�cient are plotted in Figures 18 and 19

for the values of heave rate considered. The e�ect of increasing the non-dimensional heave
rate is very similar to that of increasing the reduced frequency for the sinusoidal case. At
lower rates, as shown in Figure 18, there are traces of shed leading edge vortices between
two strong trailing edge vortices. Further, note that there is wake de�ection at higher rates.
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Figure 14. Unsteady wake patterns with di�erent shape functions, k �h=0:5, k =7: (a) S =80%;
(b) S =70%; (c) S =60%; and (d) S =50%. Instantaneous h=c=0:07 (upstroke) for all asymmetric

sinusoidal case, for S =50%, airfoil is at the mean position downwards.
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Figure 15. Average thrust coe�cient and propulsive e�ciency for asymmetric sinusoid heaving.

At the points where the constant heave rate changes sign discontinuously, the drag
coe�cient also changes abruptly. The time history of the drag coe�cient has been shown
in Figure 20(a) with the random noise present in it. The random noise is present due to the
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Figure 16. k �h=0:5; k =6. Opposite initial condition: (a) and (b) S =30%; and (c) and (d) S =60%.
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equivalent sinusoidal heave

Figure 17. A typical qualitative plot showing constant rate heaving motion and its
equivalent sinusoidal heaving motion.

random walk model for the di�usion process. However, a moving average in time is done
to eliminate the noise, [19]. However, as Figure 20(b) shows, this averaging process cannot
capture the exact location of the sharp discontinuity in the response. It smoothens out the
response to some extent. The drag coe�cient versus heave displacement plot for all the dif-
ferent cases of constant rate case is shown after the time averaging. It should be noted here
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Figure 18. Constant rate heave oscillation. Wake pattern and drag coe�cient history, �h=0:2:
(a) and (b) vo=V∞=0:4; and (c) and (d) vo=V∞=0:6.

that for continuous response, such averaging does not a�ect the system response characteristics
qualitatively.
The average drag coe�cient and the propulsive e�ciency for the constant rate cases as well

as their corresponding sinusoidal cases have been plotted in Figure 21. The thrust coe�cient
versus non-dimensional rate plot follows the same trend as well as almost have the same
values as in the sinusoidal case. The propulsive e�ciency though is lower, in general, for the
constant rate case.

4.4. Sinusoidal pulses

Sinusoidal pulse trains could serve as models for certain types of animal locomotion. We
therefore studied sinusoidal heaving motion with a quiescent gap, repeated many times as
shown in Figure 22(a). T is the time period of the sinusoidal part and the gap period for
which the heaving oscillation is zero is given by a fraction (fa) of the time period T . We
have considered two di�erent cases with fa=2 and 4. The wake pattern for such types of
motion is quite di�erent than all the earlier cases presented here. Large de�ection of the wake
is obtained during the quiescent gap period of the motion as shown in Figure 22(b). Note
that the large downward de�ection of the wake is associated with large impulse imparted to
the wake when the airfoil is stationary for some time interval T=fa. This is to be contrasted
with the impulses imparted to the �uid in the constant-rate heave case shown in Figures 18
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Figure 19. Constant rate heave motion. Wake pattern and drag coe�cient history, �h=0:2:
(a) and (b) vo=V∞=0:8; and (c) and (d) vo=V∞=1:0.

and 19. There, despite the presence of a discontinuity in the rate at the end of the upstroke
and downstroke, it does not result in large wake displacement. The heave rate changes sign
there and the wake is pulled in an opposite direction to what it was before. In the present
case, the heave rate changes from a positive or negative value to zero. What one sees as a
wake displacement is the drift of the trailing edge vortex.
The drag coe�cients have been plotted for both the cases in Figure 23. Note the large

change in the drag coe�cient during the time interval the airfoil is stationary.
Table I compares the average load coe�cients and the propulsive e�ciencies for both the

cases with the corresponding sinusoidal case. Expectedly, the thrust force for the sinusoidal
case without gap is maximum. However, the propulsive e�ciency is also higher for the
sinusoidal case.

5. CONCLUSION

The present work addresses the problem of thrust generated by an airfoil oscillating in a not
purely sinusoidal motion. We have considered three classes of motions. One is the asymmetric
sinusoid which is a sinusoid excepting that the upstroke is faster=slower than the downstroke.
The asymmetry parameter S de�nes the fraction of the time-period it takes to complete the
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Figure 20. Constant rate heave motion, �h=0:2: (a) drag time history for rate= 0.4; and (b) drag time
history after time averaging for rate= 0:4.

downstroke. The second type of motion considered is the constant heave rate in the upstroke
and downstroke. This results in a triangular waveform. The third and �nal type of motion
studied is the sinusoidal pulse train. These type of motions consists of a sinusoidal oscillation
followed by a time-interval in which the airfoil is stationary. There are signi�cant di�erences
in the vortex shedding behaviour for all these types of motion. For the asymmetric sinusoidal
cases, the wake patterns always look de�ected from the mean position. The de�ection mode
changes as the asymmetry parameter S changes. Another important observation of this asym-
metric sinusoidal case is that the vortex pairing pattern changes from cycle to cycle. Also,
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Figure 21. Constant rate heave motion, �h=0:2: (a) average thrust coe�cient;
and (b) average propulsive e�ciency.

at higher k �h values, the wake patterns look more di�used. The aerodynamic thrust coe�cient
and the propulsive e�ciency have been compared with their corresponding sinusoidal cases.
For all k �h values, thrust force is minimum for the sinusoidal case. This trend can be explained
by looking at the wake patterns. For asymmetric sinusoidal cases, the wake vortex patterns
are much more de�ected than the perfect sinusoidal cases. This could translate into greater
thrust values. However, the propulsive e�ciency show di�erent trends at di�erent k �h val-
ues. We have also compared di�erent types of non-sinusoidal motions like constant pitching
rates, sinusoid with a gap, etc. with their equivalent sinusoidal motions. However, these cases
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Figure 22. (a) Schematic plot of a heaving motion described by a sinusoid followed by a
gap, heave is zero during T=fa, fa is a fraction of the sinusoidal time period; and (b) the

wake pattern for such heaving motion; k �h=1:5; fa=4.

show lesser thrust force as well as smaller propulsive e�ciency values than their sinusoidal
counterparts.
A random discrete vortex technique has been used for the numerical simulation of the two-

dimensional, viscous, unsteady system. A smooth implementation of the method depends on
various aspects. One should be careful about choosing the number of vortices generated at
each time step. A hugely over estimated vortex point representation can be severely wrong,
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Figure 23. The drag history for sinusoid followed by a gap heaving motion,
k �h=1:5: (a) fa=4; and (b) fa=2.

and too few a number of vortex particles in the �ow �eld may be insu�cient to accurately
simulate the true physical phenomenon. Further, too small a time step size may restrain the
nascent vortices from entering the �ow �eld after crossing the control zone. In that case,
if more number of vortices are generated per time step, it may counter this e�ect to some
extent. In other words, more number of panels and sub-panels should be considered. Also,
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Table I. Cd and 
 for sinusoid with a gap motion.

Cd 
 (s) (%)

Sinusoid with k �h=1:5, k =4 −1:0571 23.2
Sinusoid with gap= T=2 −0:6838 15.2
Sinusoid with gap= T=4 −0:8257 15.6

manipulating the thickness of the control zone can be useful. Hence the time step, control zone
thickness, and also the number of vortices generated, are somewhat mutually dependent. It
needs some trial and error estimation for any simulation to �x the values of these parameters.
In the present study, the same set of values for these parameters were used for all simulation
cases. We did not change them as good convergence was obtained throughout.
This technique requires large number of discrete vortices to be generated in the �ow �eld

for better convergence. Depending on the time window of the simulation, the total number of
vortices N present in the �ow �eld could be of the order of a few thousands. The computa-
tional cost varies as a function of N 2, hence the method could computationally become very
intensive, and consequently slow down the time marching process for the unsteady problem
being simulated. In this regard, it should be mentioned that there are some fast algorithms
proposed in the literature that could be useful in bringing down the computational cost. These
techniques reduce the computational cost from the order of N 2 to N logN [25], or to N
[26], and therefore are faster. Such methods could add some improvement in terms of simu-
lation time especially with slower processors. In the present simulation, the maximum CPU
time spent was in the range of 12–16 h on an COMPAQ AlphaServer ES 40 (non-parallel
environment), and we did not employ any fast algorithm.
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